Amenable Groups with a Locally Invariant Order Are Locally Indicable

نویسنده

  • PETER LINNELL
چکیده

We show that every amenable group with a locally invariant partial order has a left-invariant total order (and is therefore locally indicable). We also show that if a group G admits a left-invariant total order, and H is a locally nilpotent subgroup of G, then a left-invariant total order on G can be chosen so that its restriction to H is both left-invariant and right-invariant. Both results follow from recurrence properties of the action of G on its binary relations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amenable groups that act on the line Dave

Let Γ be a finitely generated, amenable group. Using an idea ofÉ. Ghys, we prove that if Γ has a nontrivial, orientation-preserving action on the real line, then Γ has an infinite, cyclic quotient. (The converse is obvious.) This implies that if Γ has a faithful action on the circle, then some finite-index subgroup of Γ has the property that all of its nontrivial, finitely generated subgroups h...

متن کامل

un 2 00 6 Amenable groups that act on the line

Let Γ be a finitely generated, amenable group. We prove that if Γ has a nontrivial, orientation-preserving action on the real line, then Γ has an infinite, cyclic quotient. (The converse is obvious.) This implies that if Γ has a faithful action on the circle, then some finite-index subgroup of Γ has the property that all of its nontrivial finitely generated subgroups have infinite, cyclic quoti...

متن کامل

Characterizations of amenable hypergroups

Let $K$ be a locally compact hypergroup with left Haar measure and let $L^1(K)$ be the complex Lebesgue space associated with it. Let $L^infty(K)$ be the dual of $L^1(K)$. The purpose of this paper is to present some necessary and sufficient conditions for $L^infty(K)^*$ to have a topologically left invariant mean. Some characterizations of amenable hypergroups are given.

متن کامل

-

In this paper we give some characterizations of topological extreme amenability. Also we answer a question raised by Ling [5]. In particular we prove that if T is a Borel subset of a locally compact semigroup S such that M(S)* has a multiplicative topological left invariant mean then T is topological left lumpy if and only if there is a multiplicative topological left invariant mean M on M(S)* ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012